
Using PLEXIL with WSL 2 Install Instructions

Optional - Install “Windows Terminal” from the Microsoft Store. It’s a useful terminal window

that is able to use Windows Powershell, all your Linux distros, Windows CMD, etc., all at the

same time.

Installing WSL 2:

1. Press the Windows key, search “Turn Windows Features on or off,” and select the

option.

2. Check the boxes next to “Virtual Machine Platform” and “Windows Subsystem for Linux.”

If you plan on using docker, select the “Windows Hypervisor Platform” box as well. Press

“Ok” and follow instructions. You likely need to reboot.

3. You need to be using Windows version 2004, build 19041 or higher. This will most likely

require you to check for updates at the very least and update your OS.

NOTE: It is possible you will need to join the Windows Insider Program to access all of

the required updates. Join the “Release Preview” ring.

If you have an Nvidia GPU: If you have an Nvidia GPU, it’s possible for WSL 2 to have

GPU acceleration while using docker. You need to join the Windows Insider Program

and select the “Fast” ring.

After Joining Insider Program: Go to settings > Update & Security > Windows Update.

Check for Updates.

Download and install updates.

Reboot.

4. Download and install the Linux kernel update package. (Only needs to be done the first

time. Kernel updates will come through Windows updates.) Download and follow installer

instructions.

https://docs.microsoft.com/en-us/windows/wsl/wsl2-kernel

5. Open Powershell and run this command to set your default WSL version to 2.

wsl --set-default-version 2

6. Open the Microsoft Store and install “Ubuntu 18.04 LTS.”

7. Open Ubuntu once it’s installed for your first time setup. Set your username and

password.

8. Open Windows Powershell and run

https://docs.microsoft.com/en-us/windows/wsl/wsl2-kernel
https://docs.microsoft.com/en-us/windows/wsl/wsl2-kernel

wsl --list --verbose

9. If your distribution says it’s using WSL version 1, run this command to convert it to

version 2.

wsl --set-version <distribution name> <versionNumber>

10. If you have any issues, refer to https://docs.microsoft.com/en-us/windows/wsl/install-

win10

Setting up a GUI and desktop environment on WSL 2:

(Optional but recommended for some features)

1. Open Windows Powershell and run

ipconfig

Look under “Ethernet adapter vEthernet (WSL):” and copy the “IPv4 Address.”

Open your “.bashrc and set your “DISPLAY” environment variable.

cd ~

nano .bashrc

 (Place at the bottom of your .bashrc file, save and exit)

 export DISPLAY=<COPIED IPv4 ADDRESS>:0

 (looks something like DISPLAY=123.45.678.9:0)

 NOTE: This will need to be done every time you restart

 your computer before opening the GUI.

Now source your .bashrc file.

source ~/.bashrc

2. Next download and install VcXsrv. https://sourceforge.net/projects/vcxsrv/

Follow the steps in the installer.

3. When prompted, allow VcXsrv on both private and public networks.

- If you weren’t prompted, you will need to open your Start menu and search “Allow an

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://sourceforge.net/projects/vcxsrv/
https://sourceforge.net/projects/vcxsrv/

app through Windows Firewall.” Open it up and scroll down to “VcXsrv windows xserver”

and check the boxes under “Private” and “Public.” Press OK and exit.

4. Now install your chosen desktop. Xfce and KDE (Kubuntu) have been tested to work

successfully.

Xfce:

sudo apt-get update && sudo apt-get upgrade -y

sudo apt-get install xfce4

KDE:

sudo apt-get update && sudo apt-get upgrade -y

sudo add-apt-repository ppa:kubuntu-ppa/backports

sudo apt-get install kubuntu-desktop

If you’d like to try another desktop environment, here’s a reference.

https://www.linuxtrainingacademy.com/install-desktop-on-ubuntu-server/

5. Open your start menu and select XLaunch.

In the first window select “One Large Window.” Click Next.

In the second window select “Start no client.” Click Next.

In the third window check boxes “Clipboard,” “Primary Selection,” Native opengl,” and

“Disable access control.” (This should be all options) Click Next.

You can now save the configuration to launch quickly in the future or click “Finish” to

open the VcXsrv window.

6. Reopen your Ubuntu shell and run the command to open your desktop environment.

Xfce:

startxfce4

KDE:

startkde

https://www.linuxtrainingacademy.com/install-desktop-on-ubuntu-server/
https://www.linuxtrainingacademy.com/install-desktop-on-ubuntu-server/

NOTE: If this failed try,

sudo apt update && sudo apt upgrade

and try to start your desktop again.

7. In Xfce you can install Firefox by running “sudo apt-get install firefox” since

the default browser doesn’t work. KDE already has Firefox installed.

Reference:

https://autoize.com/xfce4-desktop-environment-and-x-server-for-ubuntu-on-wsl-2/

(Optional) Setting up Docker with WSL 2:

1. Download Docker Desktop Stable 2.3.0.2 or later.

https://hub.docker.com/editions/community/docker-ce-desktop-windows/

2. Follow installation instructions. If prompted, enable WSL 2 during installation (This might

be selected by default for you.)

3. Start Docker Desktop from the Start menu.

Go to Settings > General.

Check the box next to “Use the WSL 2 based engine.”

Click “Apply & Restart”

Go to Settings > Resources > WSL INTEGRATION

Check the box next to “Enable integration with my default WSL distro.”

Switch on the “Ubuntu-18.04” option.

Click “Apply & Restart”

4. You can now use Docker with both Windows and WSL.

Reference:

https://docs.docker.com/docker-for-windows/wsl/

If you want to use WSL 2 with Visual Studio Code and Docker:

https://code.visualstudio.com/blogs/2020/03/02/docker-in-wsl2

NOTE: Visual Studio Code might not open in a remote window when using the

command “code .”. It should say something like “WSL: Ubuntu” in the bottom left

corner of the window. If it doesn’t, you can click the bottom left corner (or press F1) and

select “Remote-WSL: Reopen Folder in WSL.” Then select Ubuntu and it will open

correctly.

https://autoize.com/xfce4-desktop-environment-and-x-server-for-ubuntu-on-wsl-2/
https://autoize.com/xfce4-desktop-environment-and-x-server-for-ubuntu-on-wsl-2/
https://hub.docker.com/editions/community/docker-ce-desktop-windows/
https://hub.docker.com/editions/community/docker-ce-desktop-windows/
https://docs.docker.com/docker-for-windows/wsl/
https://docs.docker.com/docker-for-windows/wsl/
https://code.visualstudio.com/blogs/2020/03/02/docker-in-wsl2
https://code.visualstudio.com/blogs/2020/03/02/docker-in-wsl2

(Optional) Setting up WSL 2 with an Nvidia GPU:

If you have an Nvidia GPU, WSL 2 is able to have GPU acceleration when running docker

containers with Ubuntu.

1. Make sure you have selected the “Fast” ring in the Windows Insider Program. Check for

Windows Updates and Install/Reboot as necessary.

2. Open an Ubuntu terminal and run

uname -r

Your kernel should be at least 4.19.121

If it is below that version, you can try to run this in Powershell

wsl.exe --update

Check your kernel version again. If that didn’t work, go to Settings > Update & Security >

Windows Update < Advanced options. Turn on the option “Receive updates for other

Microsoft products when you update Windows.” Check for updates again, install, and

reboot.

3. Join the Nvidia Developer Program to get early access to the Drivers.

https://developer.nvidia.com/developer-program

Download and install the appropriate Nvidia Drivers.

https://developer.nvidia.com/cuda/wsl/download

If you want to read more about CUDA on WSL

https://developer.nvidia.com/blog/announcing-cuda-on-windows-subsystem-for-linux-2/

4. NOTE: This step might not be necessary if you have Docker Desktop for Windows.

However, Docker Desktop failed much of the time for me, and following this step fixed

my issues.

First quit Docker Desktop for Windows.

Install Docker in WSL

sudo apt -y install docker.io

5. Install Nvidia Container Toolkit

“Set the distribution variable, import the Nvidia repository GPG key, and then add the

Nvidia repositories to the Ubuntu apt package manager:”

https://developer.nvidia.com/developer-program
https://developer.nvidia.com/developer-program
https://developer.nvidia.com/cuda/wsl/download
https://developer.nvidia.com/cuda/wsl/download
https://developer.nvidia.com/blog/announcing-cuda-on-windows-subsystem-for-linux-2/
https://developer.nvidia.com/blog/announcing-cuda-on-windows-subsystem-for-linux-2/

distribution=$(. /etc/os-release;echo IDVERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo

apt-key add -

curl -s -L https://nvidia.github.io/nvidia-

docker/$distribution/nvidia-docker.list | sudo tee

/etc/apt/sources.list.d/nvidia-docker.list

curl -s -L https://nvidia.github.io/libnvidia-

container/experimental/$distribution/libnvidia-container-

experimental.list | sudo tee /etc/apt/sources.list.d/libnvidia-

container-experimental.list

6. Refresh the Ubuntu apt repositories and install the Nvidia runtime.

sudo apt update && sudo apt install -y nvidia-docker2

7. Close all Ubuntu Terminals and open Powershell. Manually shutdown Ubuntu.

wsl.exe --shutdown Ubuntu

8. Open Ubuntu and start Docker

sudo service docker stop

sudo service docker start

9. Run this command to test GPU Compute

docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody

-gpu -benchmark

If everything is configured correctly, you should have an output somewhat like this.

Unable to find image 'nvcr.io/nvidia/k8s/cuda-sample:nbody' locally

nbody: Pulling from nvidia/k8s/cuda-sample

22dc81ace0ea: Pull complete

1a8b3c87dba3: Pull complete

91390a1c435a: Pull complete

07844b14977e: Pull complete

b78396653dae: Pull complete

95e837069dfa: Pull complete

fef4aadda783: Pull complete

343234bd5cf3: Pull complete

d1e57bfda6f0: Pull complete

c67b413dfc79: Pull complete

529d6d22ae9f: Pull complete

d3a7632db2b3: Pull complete

4a28a573fcc2: Pull complete

71a88f11fc6a: Pull complete

11019d591d86: Pull complete

10f906646436: Pull complete

9b617b771963: Pull complete

6515364916d7: Pull complete

Digest:

sha256:aaca690913e7c35073df08519f437fa32d4df59a89ef1e012360fbec46524ec8

Status: Downloaded newer image for nvcr.io/nvidia/k8s/cuda-sample:nbody

Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.

 -fullscreen (run n-body simulation in fullscreen mode)

 -fp64 (use double precision floating point values for simulation)

 -hostmem (stores simulation data in host memory)

 -benchmark (run benchmark to measure performance)

 -numbodies=<N> (number of bodies (>= 1) to run in simulation)

 -device=<d> (where d=0,1,2.... for the CUDA device to use)

 -numdevices=<i> (where i=(number of CUDA devices > 0) to use for simulation)

 -compare (compares simulation results running once on the default GPU and

once on the CPU)

 -cpu (run n-body simulation on the CPU)

 -tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements. Results may

vary when GPU Boost is enabled.

> Windowed mode

> Simulation data stored in video memory

> Single precision floating point simulation

> 1 Devices used for simulation

MapSMtoCores for SM 7.5 is undefined. Default to use 64 Cores/SM

GPU Device 0: "GeForce RTX 2070 with Max-Q Design" with compute capability 7.5

> Compute 7.5 CUDA device: [GeForce RTX 2070 with Max-Q Design]

36864 bodies, total time for 10 iterations: 75.215 ms

= 180.675 billion interactions per second

= 3613.504 single-precision GFLOP/s at 20 flops per interaction

NOTE: If these steps do not work try this.

1. Stop Docker Desktop.

2. Go back and perform step 4.

3. Exit all Ubuntu Terminals and shutdown wsl with Powershell for good measure.

wsl.exe --shutdown

4. Reopen an Ubuntu Terminal.

5. Then start the docker daemon in WSL.

sudo dockerd

6. Open another Ubuntu terminal.

docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody

-gpu -benchmark

7. Check to see if output looks like the example.

Resource:

https://ubuntu.com/blog/getting-started-with-cuda-on-ubuntu-on-wsl-2

You can now install PLEXIL like normal.

1. Install git if you don’t already have it.

sudo apt install git

2. Clone the PLEXIL repository.

git clone https://git.code.sf.net/p/plexil/git plexil

3. Install your dependencies if not already installed.

You can use

sudo apt install <package-name>

- make

- autotools-dev

https://ubuntu.com/blog/getting-started-with-cuda-on-ubuntu-on-wsl-2
https://ubuntu.com/blog/getting-started-with-cuda-on-ubuntu-on-wsl-2

- autoconf

- libtool

- g++

- ant

- gperf

- openjdk-8-jdk

- freeglut3-dev

4. Add these to your .bashrc file. Make sure to change the first line to be the location of

plexil.

export PLEXIL_HOME=/home/joe/plexil

export PATH=$PLEXIL_HOME/scripts:$PATH

source $PLEXIL_HOME/scripts/plexil-setup.sh

5. Source your .bashrc file.

source ~/.bashrc

6. Make and configure.

cd $PLEXIL_HOME

make src/configure

cd src

This is a good configuration for most uses.
./configure --prefix=$PLEXIL_HOME --enable-ipc --enable-module-tests --

enable-viewer --enable-sas --enable-test-exec --enable-udp

7. Build PLEXIL!

cd $PLEXIL_HOME

make

